2020CCPC威海站

比赛链接

http://codeforces.com/gym/102798

A. Golden Spirit

有一个桥,桥两边都有n个老人,你桥的一边,你可以花时间x把一个老人带到对面,然后你可以接着把那边的老人带回来,你也可以原地等待,所有老人移动一次以后需要休息t分钟,问你至少花费多少时间,能让所有老人都互相跑到对面,然后又回到原本的位置。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include<bits/stdc++.h>
using namespace std;

#define ll long long
int main(){
int T; scanf("%d", &T);
while(T--) {
ll n, x, t; scanf("%lld %lld %lld", &n, &x, &t);
ll y1 = max(x + 2 * t - 2 * n * t, 0ll);
ll y2 = max(x - 2 * n * t, 0ll);
ll ans1 = y1 + 4 * n * t, ans2 = y2 + (4 * n + 1) * t;
printf("%lld\n", min(ans1, ans2));
}
}

D. ABC Conjecture

题意

定义$rad(a)$为$a$的素因子的积, 给你一个c,你要计算是否存在两个数$a$和$b$,使得$a+b=c$且$rad(abc)<c$

数据范围

$1<c<10^{18}$

题解

打表发现唯一分解中,指数的最大值不为1时一定可以分解。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#include<bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<stdlib.h>
#include<time.h>
#pragma warning(disable:4996)
#define times 20
using namespace std;
#define ll long long
map<ll, ll> mp;

ll total;
ll factor[110];

ll qmul(ll a, ll b, ll M) {
a %= M;
b %= M;
ll ans = 0;
while (b) {
if (b & 1) {
ans = (ans + a) % M;
}
a = (a <<= 1) % M;
b >>= 1;
}
return ans % M;
}///快乘,因为两个longlong的数相乘可能会溢出,所以这里转乘法为加法,思想和快速幂相似
ll qpow(ll a, ll b, ll int M) {
ll ans = 1;
ll k = a;
while (b) {
if (b & 1)ans = qmul(ans, k, M) % M;
k = qmul(k, k, M) % M;
b >>= 1;
}
return ans % M;
}

bool witness(ll a, ll n, ll x, ll sum) {
ll judge = qpow(a, x, n);
if (judge == n - 1 || judge == 1)return 1;
while (sum--) {
judge = qmul(judge, judge, n);
if (judge == n - 1)return 1;
}
return 0;
}

bool miller(ll n) { ///判断素数
if (n < 2)return 0;
if (n == 2)return 1;
if ((n & 1) == 0)return 0;
ll x = n - 1;
ll sum = 0;
while (x % 2 == 0) {
x >>= 1;
sum++;
}
for (ll i = 1; i <= times; i++) {
ll a = rand() % (n - 1) + 1;
if (!witness(a, n, x, sum))return 0; ///费马小定理的随机数检验
}
return 1;
}

ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}

ll pollard(ll n, ll c) {
ll x, y, d, i = 1, k = 2;
x = rand() % n;
y = x;
while (1) {
i++;
x = (qmul(x, x, n) + c) % n; ///不断调整x
d = gcd(y - x, n);
if (d < 0)d = -d;
if (d > 1 && d < n)return d; ///找到因子
if (y == x)return n; ///找到循环,返回n,重新来
if (i == k) { ///一个优化
y = x;
k <<= 1;
}
}
}

void find(ll n) {
if (miller(n)) {
factor[++total] = n;
mp[n]++;
return;
}
ll p = n;
while (p >= n) p = pollard(p, rand() % (n - 1) + 1);
find(n / p);
find(p);
}

int main() {
int t;
scanf("%d", &t);
while (t--) {
total = 0;
ll n;
scanf("%lld", &n);
if (n == 1) {
puts("no");
continue;
}
mp.clear();
find(n);
int flag = 0;
for (auto& tem : mp) {
if (tem.second >= 2) {
flag = 1;
break;
}
}
printf("%s\n", (flag == 1 ? "yes" : "no"));
}
}

H. Message Bomb

题意

有多个聊天室,三个操作

  • 学生x加入聊天室y
  • 学生x离开聊天室y
  • 学生x在聊天室y发布一条消息,这个聊天室的所有其他人会收到一条消息。

最后只有一次询问,问每个学生各自收到了多少条消息

数据范围

$10^5个聊天室$

$2\times10^5个学生$

$10^6次操作$

题解

维护一个懒标记,即聊天室中的同学收到了多少条消息,当同学离开聊天室的时候,把这个懒标记发放给这个学生。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include<bits/stdc++.h>
using namespace std;

#define ll long long
const int maxn = 1e5 + 100;
const int maxm = 2e5 + 100;

set<int>group[maxn];
int lazy[maxn];
ll ans[maxm];
int main(){
int n, m, s; scanf("%d %d %d", &n, &m, &s);
for(int i = 1; i <= s; ++i) {
int t, x, y; scanf("%d %d %d", &t, &x, &y);
if(t == 1) {
group[y].insert(x);
ans[x] -= lazy[y];
} else if(t == 2) {
group[y].erase(group[y].find(x));
ans[x] += lazy[y];
} else if(t == 3) {
lazy[y] += 1;
ans[x] -= 1;
}
}
for(int i = 1; i <= n; ++i) {
if(group[i].size() == 0) {
continue;
}
for(auto x : group[i]) {
ans[x] += lazy[i];
}
}
for(int i = 1; i <= m; ++i) {
printf("%lld\n", ans[i]);
}
}

L. Clock Master

题意

你要找一个长度为k的正整数序列a,你要最大化整个序列所有元素的lcm,输出这个lcm对自然对数的对数函数值$ln(lcm)$

题解

显然序列a中两两互质是最优解。所有我们直接考虑只取素数。

然后就成了容量为2,3,5,7,11,13,17…价值为ln2,ln3,ln5,ln7,ln11,ln13,ln17的01背包问题。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include<bits/stdc++.h>

using namespace std;
typedef long long ll;

ll lcm(ll x, ll y) {
return x / __gcd(x, y) * y;
}

ll dfs(int maxValue, int result) {
if (maxValue + 1 > result) {
return 1;
}
ll ans = 1;
for (int i = maxValue + 1; i <= result; i++) {
ans = max(ans, lcm(dfs(i, result - i), i));
}
return ans;
}

void showfactor(int x) {
int s = sqrt(x);
for(int i = 2; i <= s; ++i) {
while(x % i == 0) {
cout << i << " ";
x /= i;
}
}
cout << x << endl;
}


const int maxn = 30000;
double f[maxn + 100];
vector<int> prime;
vector<pair<ll, double>> item[maxn + 100];

void ini() {
for (int i = 2; i <= maxn; ++i) {
int s = sqrt(i);
bool ok = true;
for (int j = 2; j <= s; ++j) {
if (i % j == 0) {
ok = false;
break;
}
}
if (ok) {
prime.push_back(i);
}
}

for (auto x : prime) {
for (ll i = x; i <= maxn; i = i * x) {
ll c = i;
double w = log(i);
item[x].push_back(make_pair(c, w));
}
}

int n = prime.size();

for (int k = 0; k < n; ++k) {
for (int v = maxn; v >= 0; --v) {
for (int i = 0; i < item[prime[k]].size(); ++i) {
ll c = item[prime[k]][i].first;
double w = item[prime[k]][i].second;
if (v >= c) {
f[v] = max(f[v], f[v - c] + w);
}
}
}
}
}


int main() {
//
// for (int i = 1; i <= 100; i++) {
// int ans = dfs(0, i );
// cout << log(ans) << "\n";
// }

ini();
int t;
scanf("%d", &t);
for (int i = 1; i <= t; ++i) {
int b;
scanf("%d", &b);
printf("%.10lf\n", f[b]);
// printf("%.10lf\n",pow(2.718281828, f[b]));
// printf("%.10lf\n", log(dfs(0, b)));
// cout << dfs(0, b) << "\n";
// showfactor(dfs(0, b));
// showfactor(1021020);
}
}

C. Rencontre

题意

给你一颗树,边带权,有三个人,这三个人都有自己的候选点集,他们等概率的出现在自己的候选点集上,三个人想要走到同一个点,问你三个人走的路的和的最少期望是多少。

题解

三个点abc汇聚到一起的最小答案是$\frac{ab+bc+ac}{2}$, 然后就是换根dp。


2020CCPC威海站
http://fightinggg.github.io/fluid/QSL8C0.html
作者
fightinggg
发布于
2021年5月4日
许可协议