常用数论函数变换

中间结论

\[ f_n = \sum_{i=0}^n (-1)^i {n \choose i} g_i \Leftrightarrow g_n = \sum_{i=0}^n (-1)^i {n \choose i} f_i \]

\[ f_n = \sum_{i=0}^n {n \choose i} g_i \Leftrightarrow g_n = \sum_{i=0}^n (-1)^{n-i} {n \choose i} f_i \]

杜教筛

\[ g(1)\sum_{i=1}^nf(i)=\sum_{i=1}^{n}(f*g)(i)-\sum_{d=2}^{n}g(d) \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f(i) \]

数论变换

\[ \begin{aligned} &e(n)=[n=1] \\&id(n)=n \\&I(n)=1 \\&d(n)=\sum_{x|n}1 (就是因子个数) \\&σ(n)=\sum_{x|n}x (就是因子和) \\&\mu(n) 莫比乌斯函数 \\&\phi(n) 欧拉函数 \\&I\ast I=d \\&I\ast id=σ \\&I\ast \phi=id \\&I\ast \mu=e \end{aligned} \]

自变量互质的前缀和函数分析

\[ \begin{aligned} &\sum_{i=1}^n{f(i)[gcd(i,j)=1]}=\sum_{d|j}{\mu(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f(i*d)}\\ &\sum_{i=1}^n{[gcd(i,j)=1]}=\sum_{d|j}{\mu(d)\lfloor\frac{n}{d}\rfloor}\\ &\sum_{i=1}^n{[gcd(i,n)=1]}=\phi(n)\\ &\sum_{i=1}^n{i[gcd(i,j)=1]}=\sum_{d|j}{\mu(d)d\frac{\lfloor\frac{n}{d}\rfloor(\lfloor\frac{n}{d}\rfloor+1)}{2}}\\ &\sum_{i=1}^n{i[gcd(i,n)=1]}=\frac{n}{2}(\phi(n)+e(n))\\ &\sum_{i=1}^n\sum_{j=1}^nij[gcd(i,j)=1]=\sum_{j=1}^nj^2\phi(j)\\ \end{aligned} \]