nexthexonextbutterflyvolantisyearnyiliashokaindigoapollolandscapecactusmateryicarusfluidmaterial
比赛链接http://codeforces.com/gym/102798
A. Golden Spirit有一个桥,桥两边都有n个老人,你桥的一边,你可以花时间x把一个老人带到对面,然后你可以接着把那边的老人带回来,你也可以原地等待,所有老人移动一次以后需要休息t分钟,问你至少花费多少时间,能让所有老人都互相跑到对面,然后又回到原本的位置。
123456789101112131415#include<bits/stdc++.h>using namespace std;#define ll long longint main(){ int T; scanf("%d", &T); while(T--) { ll n, x, t; scanf("%lld %lld %lld", &n, &x, &t); ll y1 = max(x + 2 * t - 2 * n * t, 0ll); ll y2 = max(x - 2 * n * t, 0ll); ll ans1 = y1 + 4 * n * t, ans2 = y2 + (4 * n + 1) * t; printf("%lld\n", min(ans1, ans2)); }}
阅读全文
nexthexonextbutterflyvolantisyearnyiliashokaindigoapollolandscapecactusmateryicarusfluidmaterial
比赛链接https://ac.nowcoder.com/acm/contest/15880?&headNav=www
B Binary Vector题意随机n个n维01向量,询问这个n个向量线性无关的概率
题解考虑第一个向量,可以有$2^n-1$选择,你不可以选择全为0的向量
然后考虑与第一个向量线性无关的向量,可以有$2^n-2^1$个,因为第一个向量的0倍和1倍不能选。
然后考虑与第一个和第二个向量线性无关的向量,可以有$2^n-2^2$个
于是最终的方案数为$\begin{aligned}\prod_{i=0}^{n}2^n-2^i\end{aligned}$ , 考虑分母为$2^{n\cdot n}$$$\begin{aligned}&\frac{\begin{aligned}\prod_{i=0}^{n-1}2^n-2^i\end{aligned}}{2^{n\cdot n}}\&=\begin{aligned}\prod_{i=0}^{n-1}1-\frac{2^i}{2^n}\end{aligned}\&=\begin{aligned}\prod_{i=1}^{n}1-2^{-i}\end{aligned}\end{aligned}$$
阅读全文
nexthexonextbutterflyvolantisyearnyiliashokaindigoapollolandscapecactusmateryicarusfluidmaterial
集合论集合论是群论的基础,群论是建立在集合论上的。
集合的基本操作集合的交$$A \cap B = \lbrace x \vert x \in A \wedge x \in B \rbrace$$
集合的并$$A \cup B = \lbrace x\vert x \in A \vee x \in B \rbrace$$
集合的笛卡尔积注意到笛卡尔积是一个二元组。$$A \times B = \lbrace (x,y) \vert x \in A \wedge y \in B \rbrace$$
集合的映射我们定义一个映射$f$满足 $f(x) = y $, 其中 $x\in A$, $y\in B$, 即映射可以把一个集合A中的元素映射到集合B中的一个元素。
可以称映射$f$作用于集合A,映射到集合B
阅读全文