Believe it

相信不屈不挠的努力,相信战胜死亡的年轻

介绍

球盒模型指的是把球放入盒子里的题目模型(强行解释)

分为盒子同或不同,球同或不同,盒子允许空或不空,所以一共八种问题

结论

不妨假设n个球,m个盒子

盒异,球同,盒子允许空 \(C_{m+n-1}^{m-1}\)

盒异,球同,盒不允许空\(C_{n-1}^{m-1}\)

盒同,球同,盒子允许空\(\begin{aligned}\prod _{j=1}^{m}\frac{1}{1-x^{j}}\end{aligned}\)中的\(x^n\)系数

盒同,球同,盒不允许空\(\begin{aligned}x^m\prod _{j=1}^{m}\frac{1}{1-x^{j}}\end{aligned}\)\(x^n\)的系数

盒异,球异,盒子允许空 \(m^n\)

盒异,球异,盒不允许空\(\begin{aligned}\sum _{k=0}^{m}(C_m^k(-1)^{m-k}k^n)\end{aligned}\)

盒同,球异,盒子允许空\[\begin{aligned}\sum_{i=0}^{m} \sum_{k=0}^i\frac{C_i^k(-1)^{i-k}k^n}{i!}\end{aligned}\]

盒同,球异,盒不允许空\(\begin{aligned}\sum _{k=0}^m\frac{C_m^k(-1)^{m-k}k^n}{m!}\end{aligned}\)

阅读全文 »

比赛链接

http://codeforces.com/gym/102832

A. Krypton

题意

充游戏币,首充可以获得优惠,之后充值就没有优惠了,问你x元最多能拿到多少游戏币。 \[ \begin{array}{|c|c|c|} \hline \text{Price (RMB yuan)} & \text{Normal amount (coupons)} & \text{First recharge reward (coupons)} \\ \hline 1 & 10 & 8 \\ \hline 6 & 60 & 18 \\ \hline 28 & 280 & 28 \\ \hline 88 & 880 & 58 \\ \hline 198 & 1980 & 128 \\ \hline 328 & 3280 & 198 \\ \hline 648 & 6480 & 388 \\ \hline \end{array} \]

阅读全文 »

简介

快速幂是能快速计算一个幂的方案,他可以作用于所有满足结合律、封闭性的二元运算,即半群

定义

不妨假设这个二元运算为\(\circ\),两个元素进行运算为\(x\circ y\),当\(xy\)同为\(x\)时,不妨设\(x^2=x\circ x\), 同样的\(x^1=x\), 当然\(x^0=e\), 还有\(x^k=x^{k-1}\circ x\)

快速幂核心思想

在半群中,只要\(k=u+v\)一定有\(x^k=x^u\circ x^v\).

所以我们可以把k看作一个二进制数,把\(x^k\)分解为\(x^{2^{p_1}}\circ x^{2^{p_2}}\circ x^{2^{p_3}}\circ \circ \circ x^{2^{p_n}}\)

这里最多分解为\(\log_2(k)\)个元素,而且每个元素可以由前k个元素获取,所以只需要进行\(log_2(k)\)次二元计算即可的到最终答案。

阅读全文 »

比赛链接

https://ac.nowcoder.com/acm/contest/15167

A. A Warm Welcome

题意

输出Shenzhen Institute of Computing Sciences

B. Mr.Maxwell and attractions

题意

你可以上午工作下午玩,也可以上午玩下午工作。

玩可以获得快乐,玩的时候有两类地方,一类是室内,一类是室外,室外下午玩会降低快乐值为\(80\%\),重复玩一个地方会导致快乐值降低\(60\%\), 可叠加。

你需要至少k个早上都在工作,问你最多获得多少快乐值。

题解

枚举玩多少次室内即可。用前缀和加速。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#include<bits/stdc++.h>
using namespace std;
#pragma warning(disable:4996)
priority_queue<double, vector<double>, less<double>>ap, bp;
const int maxn = 1e5 + 100;
double a[maxn],b[maxn],at[maxn],bt[maxn],apreSum[maxn], bpreSum[maxn];
int n, m, t, k;
void initQ() {
int cnt = 1;
while (cnt <= t) {
double cura = ap.top();
ap.pop();
ap.push(cura * 0.6);
at[cnt] = cura;
apreSum[cnt] = apreSum[cnt - 1] + at[cnt];


double curb = bp.top();
bp.pop();
bp.push(curb * 0.6);
bt[cnt] = curb;
bpreSum[cnt] = bpreSum[cnt - 1] + bt[cnt];
cnt++;
}

}
void show() {
for (int i = 1; i <= t; i++) {
cout << at[i] << " " << bt[i] << endl;
}
for (int i = 1; i <= t; i++) {
cout << apreSum[i] << " " << bpreSum[i] << endl;
}
}
void solve() {
double ans = 0.0;
for (int x = 0; x <= t; x++) {
int y2 = t - x;
int y1 = y2;
if (x < k) {
y1 -= (k-x);
}
double curAns = apreSum[x] + bpreSum[y1] + (0.8 * (bpreSum[y2] - bpreSum[y1]));
ans = max(ans, curAns);
}
printf("%.2lf", ans);
}
int main() {
scanf("%d%d%d%d", &n, &m, &t, &k);
for (int i = 1; i <= n; i++) {
scanf("%lf", &a[i]);
ap.push(a[i]);
}

for (int i = 1; i <= m; i++) {
scanf("%lf", &b[i]);
bp.push(b[i]);
}
initQ();
solve();
}

C. Hamster and Equation

题意

输入n和k

输出 \[ x_1(x_1+1)+x_2(x_2+1)=k(x_3(x_3+1)+x_4(x_4+1)) \\ x_1,x_2,x_3,x_4 \in [-n,n] \] 的解的个数

数据范围

\(0\lt n,|k|\lt500\)

题解

预处理等式左边,枚举等式右边,复杂度\(n^2\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include<bits/stdc++.h>
using namespace std;

#define ll long long
int main() {
int t; scanf("%d", &t);
while(t--) {
int n, k; scanf("%d%d", &n, &k);
unordered_map<ll, ll>ex;
for(int i = -n ; i <= n; ++i) {
for(int j = -n; j <= n; ++j) {
ll tem = 1ll * k * (1ll * i * (i + 1) + 1ll * j * (j + 1));
ex[tem]++;
}
}
ll cnt = 0;
for(int i = -n; i <= n; ++i) {
for(int j = -n; j <= n; ++j) {
ll tem = 1ll * i * (i + 1) + 1ll * j * (j + 1);
cnt += ex[tem];
}
}
printf("%lld\n", cnt);
}
}

D. WA

题意

输入一个字符串\(S\), 一个整数\(k\), 你可以修改字符串\(S\)的任意k个字母,问你修改后最多出现多少个\(aa\)子串。输出修改后的串。

数据范围

\(|S|\le 5\times10^5\)

\(k\le |S|\)

题解

预处理所有a之间的空隙,优先修改短的空隙,按顺序模拟即可。注意最后修改两端的空隙。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include<bits/stdc++.h>

using namespace std;

#define ll long long

const int maxn = 5e5 + 5;
char s[maxn];

typedef pair<int, int> pii;

int main() {
int t;
//scanf("%d", &t);
t = 1;
while (t--) {
int n, k;
scanf("%d %d %s", &n, &k, s);

vector<pii> vec;
vec.push_back({int(1e9), -1});

for (int i = 0; i < n; i++) {
if (s[i] == 'a') {
vec.push_back({0, i});
} else {
vec.back().first++;
}
}

vector<pii> vec2;
for (auto x:vec) {
if (x.first != 0) {
vec2.push_back(x);
}
}


sort(vec2.begin(), vec2.end());

int cnt = 0;
for (auto p:vec2) {
if (p.second == -1) {
int up = p.second + 1;
while (up < n && s[up] != 'a') up++;
for (int i = up - 1; i > p.second; i--) {
if (cnt == k) {
break;
}
s[i] = 'a';
cnt++;

}
} else {
for (int i = p.second + 1; i < n && s[i] != 'a'; i++) {
if (cnt == k) {
break;
}
s[i] = 'a';
cnt++;

}
}

}

int base = 0;
for (int i = 0; i < n; i++) {
if (i != 0 && s[i] == 'a' && s[i - 1] == 'a') {
base++;
}
}


printf("%d\n%s\n", base, s);
}
}

E. Pipeline Maintenance

题意

给你一条长度为n的链,外加三个点,这三个点与链上每个点都连边,你得到了一个图,问你这个图的最小生成树的个数是多少。

输入只有一个n

数据范围

\(n\lt 10^9\)

题解

首先推出基尔霍夫矩阵,发现这个矩阵是有少量的地方有值,很明显他的行列式就是一个多项式,所以答案一定是一个多项式。

暴力计算前100项,然后BM线性递推即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include<bits/stdc++.h>
#pragma warning(disable:4996)
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int, int> PII;
const ll mod = 1000000007;
ll powmod(ll a, ll b) { ll res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1)res = res * a % mod; a = a * a % mod; }return res; }
ll n;
namespace linear_seq {
const int N = 10010;
ll res[N], base[N], _c[N], _md[N];

vector<int> Md;
void mul(ll* a, ll* b, int k) {
rep(i, 0, k + k) _c[i] = 0;
rep(i, 0, k) if (a[i]) rep(j, 0, k) _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
for (int i = k + k - 1; i >= k; i--) if (_c[i])
rep(j, 0, SZ(Md)) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
rep(i, 0, k) a[i] = _c[i];
}
int solve(ll n, VI a, VI b) {
ll ans = 0, pnt = 0;
int k = SZ(a);
assert(SZ(a) == SZ(b));
rep(i, 0, k) _md[k - 1 - i] = -a[i]; _md[k] = 1;
Md.clear();
rep(i, 0, k) if (_md[i] != 0) Md.push_back(i);
rep(i, 0, k) res[i] = base[i] = 0;
res[0] = 1;
while ((1ll << pnt) <= n) pnt++;
for (int p = pnt; p >= 0; p--) {
mul(res, res, k);
if ((n >> p) & 1) {
for (int i = k - 1; i >= 0; i--) res[i + 1] = res[i]; res[0] = 0;
rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod;
}
}
rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod;
if (ans < 0) ans += mod;
return ans;
}
VI BM(VI s) {
VI C(1, 1), B(1, 1);
int L = 0, m = 1, b = 1;
rep(n, 0, SZ(s)) {
ll d = 0;
rep(i, 0, L + 1) d = (d + (ll)C[i] * s[n - i]) % mod;
if (d == 0) ++m;
else if (2 * L <= n) {
VI T = C;
ll c = mod - d * powmod(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m) C.pb(0);
rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
L = n + 1 - L; B = T; b = d; m = 1;
}
else {
ll c = mod - d * powmod(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m) C.pb(0);
rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
++m;
}
}
return C;
}
int gao(VI a, ll n) {
VI c = BM(a);
c.erase(c.begin());
rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod;
return solve(n, c, VI(a.begin(), a.begin() + SZ(c)));
}
};
int a[1000] = { 1,20,216,1840,13775,95040,619801,3878720,23520456,139127500,806585879,599175652,861664394,707058859,417979870,901047604,478633297,859865743,368755586,930893321,243990638,416220770,156922876,768961406,372030171,188255286,753829864,246844887,442658427,357182332,744405222,783203806,469197530,863684841,605924134,166060944,506226150,446220745,171110722,498919220,700717610,739340306,607058637,253306001,703467596,231535400,903802311,143421365,864786702,113238066,748503739,575557576,596128329,62322981,98752077,240806338,956345596,374036254,976624372,344168146,879827644,658625868,76392155,576562868,336205776,392396240,70109394,71982377,780620194,821250696,668859101,16081127,485315931,278337560,180126339,172842175,402815218,33449281,512582468,457919375,64916357,966658493,531395887,571188277,243742869,586283678,302575818,40249574,901283990,633872644,396221397,13159314,543397157,575791218,993120783,494677489,620570286,883513941,153287837,309800837 };
int main() {
vector<int>v;
for (int i = 0; i < 50; i++) {
v.push_back(a[i]);
}
scanf("%lld", &n);
printf("%lld\n", 1LL * linear_seq::gao(v, n - 1) % mod);
}

F. Meet in another world, enjoy tasty food!

题意

\(n\)个人在排队,给你长度为n的数组,这是每个人都的耐心值,排名为\(i\)的人每秒会丧失\(i\)点耐心,当耐心值低于\(0\)的时候,这个人会离开队列,与此同时,他后面的人的排名都会减少1。你需要输出出队顺序。

数据范围

\(n\lt 1000\)

\(a_i<10^{18}\)

题解

暴力计算每一轮谁离开了队列。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include<bits/stdc++.h>

using namespace std;

#define ll long long
typedef pair<ll, ll> pll;

int main() {
ll t;
t = 1;
while (t--) {
ll n;
scanf("%lld", &n);
vector<pll> a;

for (ll i = 1; i <= n; i++) {
ll x;
scanf("%lld", &x);
a.push_back(make_pair(x, i));
}

vector<ll> ans;
for (ll _ = 1; _ <= n; _++) {
ll k = 1e18 + 100;
for (ll i = 0; i < a.size(); i++) {
ll rank = i + 1;
k = min(k, (a[i].first + rank - 1) / rank);
}
vector<pll> b;

if (k != 1) {
k--;
for (ll i = 0, ii = 1; i < a.size(); i++) {
if (a[i].first - ii * k <= 0) {
ans.push_back(a[i].second);
} else {
a[i].first -= k * ii;
b.push_back(a[i]);
ii++;
}
}
a = b;
b.clear();
}

k = 1;
for (ll i = 0, ii = 1; i < a.size(); i++) {
if (a[i].first - ii * k <= 0) {
ans.push_back(a[i].second);
} else {
a[i].first -= k * ii;
b.push_back(a[i]);
ii++;
}
}
a = b;
b.clear();
}

for (ll x: ans) {
printf("%lld ", x);
}
printf("\n");
}
}

链接

https://ac.nowcoder.com/acm/contest/15801?&headNav=www

B Graph

题意

n个点的带权树,你可以删边,但要保证删边后图联通,可以加边,但要保证加边后所有简单环的异或和为0。

现在你可以随便操作,需要操作后的树的边权和最小。

题解

题目中的两个操作都不会影响两个顶点之间路径的异或和。所以实际上相当于给了一个完全图,两个点之间的边权就是原始树上这两个点之间的路径的异或和,你要求一个最小生成树。

很多人都知道最小生成树有Kruskal算法和Prim算法,但是很少有人知道第三个算法:Boruvka算法,因为这个算法不常用。

阅读全文 »

链接

https://ac.nowcoder.com/acm/contest/15789

B Basic Gcd Problem

题意

定义 \[ f_c(x)= \begin{cases} max_{i=1}^n c\cdot f_c(\gcd(i,x)) &x\gt1\\ 1&x=1 \end{cases} \]

输入c和x

题解

f函数迭代次数越多,则值越大,也就是x取gcd的次数越多越好,所以每次选择x的最大因子即可。最终使用快速幂解决。

阅读全文 »

比赛链接

https://ac.nowcoder.com/acm/contest/15688?&headNav=www

A All with Pairs

题意

给你字符串n个字符串\(s_1\)\(s_2\)\(s_3\),... \(s_n\)给你函数\(f(s,t)\),其值为最大的长度w,使得s的长度为w的前缀和t的长度为w的后缀相同完全。

你要计算 \[ \sum_{i=1}^{n}\sum_{i=1}^{n}f(s_i,s_j)^2 \mod 998244353 \]

数据范围

\(n<10^5\), 字符串总长度小于\(10^6\)

阅读全文 »

比赛链接

http://codeforces.com/gym/102798

A. Golden Spirit

有一个桥,桥两边都有n个老人,你桥的一边,你可以花时间x把一个老人带到对面,然后你可以接着把那边的老人带回来,你也可以原地等待,所有老人移动一次以后需要休息t分钟,问你至少花费多少时间,能让所有老人都互相跑到对面,然后又回到原本的位置。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include<bits/stdc++.h>
using namespace std;

#define ll long long
int main(){
int T; scanf("%d", &T);
while(T--) {
ll n, x, t; scanf("%lld %lld %lld", &n, &x, &t);
ll y1 = max(x + 2 * t - 2 * n * t, 0ll);
ll y2 = max(x - 2 * n * t, 0ll);
ll ans1 = y1 + 4 * n * t, ans2 = y2 + (4 * n + 1) * t;
printf("%lld\n", min(ans1, ans2));
}
}

阅读全文 »

比赛链接

http://codeforces.com/gym/102822

D. Defuse the Bombs

题意

有一些炸弹,给你一个数组\(a\),他们\(a_i\)秒后会爆炸,你是一个拆弹专家,你可以在炸弹爆炸前,让其爆炸时间延长一秒,问你最多能坚持多少秒

题解

二分答案,直接算是错误的,只能二分。

G. Game of Cards

题意

有四个卡片,他们的数值分别是0,1,2,3,两个人轮流操作,操作是可以选择两张和小于等于3的卡片,将他们合并成一张新的卡片,卡片的值是和。谁不能操作谁就输了。

题解

考虑3的数量为0的情况,手推sg函数有循环节,

紧接着考虑三维sg函数,上程序打表发现三维也有循环节。

J. Joy of Handcraft

题意

n个灯泡,每个灯泡都是周期性发光和熄灭,在时间\(2kt_i+1\)到时间\(2kt_i+t_i\)发光,在时间\(2kt_i+t_i+1\)到时间\(2kt_i+2t_i\)熄灭,发光强度为\(x_i\)

为你从时刻1到时刻m,最亮的灯泡有多亮。

数据范围

\(n,m<10^5\)

\(1 \le t_i,x_i \le 10^5\)

题解

预处理每个周期最亮的灯泡是哪一个,然后会得到最多m个周期,对所有周期暴力取出发光区间,根据调和级数的和可以得出,最多\(mlogm\)个区间,最后离线合并处理。

K. Knowledge is Power

题意

输入一个数\(n\),问你能不能把它分成至少两个大于等于2的整数,其中两两互质且和为n。

题解

分类讨论就可以了,按照模4剩余的情况分,注意最大答案为4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <bits/stdc++.h>

using namespace std;
#define ll long long


int main() {
int t; scanf("%d", &t);
for(int tt = 1; tt <= t; ++tt){
int x; scanf("%d", &x);
printf("Case #%d: ", tt);
if(x == 6) {
printf("-1\n");
continue;
}
if(x & 1) {
printf("1\n");
} else {
if(x % 4 == 0) {
printf("2\n");
} else {
if((x - 3) % 3 == 0) {
int y = (x - 3) / 3;
if(__gcd(y, y + 2) == 1) {
printf("2\n");
continue;
}
} else if((x - 4) % 3 == 0) {
int y = (x - 4) / 3;
if(__gcd(y, y + 1) == 1 && __gcd(y, y + 3) == 1 && __gcd(y + 1, y + 3) == 1) {
printf("3\n");
continue;
}
} else if((x - 5) % 3 == 0) {
int y = (x - 5) / 3;
if(__gcd(y, y + 2) == 1 && __gcd(y, y + 3) == 1 && __gcd(y + 2, y + 3) == 1) {
printf("3\n");
continue;
}
}
printf("4\n");
}
}
}
}

L. Lottery

题意

给你一些物品,每个物品的容量为\(2^{a_i}\), 个数为\(b_i\), 你可以随意选择,最后计算容量,问你能选出多少总容量(背包计数)

题解

首先考虑二进制分组,最后每个二进制数最多两个,接着考虑连续的二进制数,使用组合数学的乘法原理进行合并。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include <bits/stdc++.h>

using namespace std;
#define ll long long

const ll mod = 1e9 + 7;

const int base = 1 << 16;
static ll pw2[base], basepw2[base];

void init() {
pw2[0] = 1;
for (int i = 1; i < base; i++) {
pw2[i] = 2ll * pw2[i - 1] % mod;
}

const int pw2base = pw2[base - 1] * 2ll % mod; // = 2^base
basepw2[0] = 1; // base[i] = pow(2,base)^i
for (int i = 1; i < base; i++) {
basepw2[i] = 1ll * pw2base * basepw2[i - 1] % mod;
}
}

int qpow2(int index) {
const int page = index >> 16;
const int offset = index & 0xffff;
return 1ll * basepw2[page] * pw2[offset] % mod; // (2^base)^page * 2 ^ offset = 2^(base*page+offset) = 2^index
}


int main() {
int T;
init();
scanf("%d", &T);
for (int cas = 1; cas <= T; ++cas) {
int n;
scanf("%d", &n);

unordered_map<int, ll> ma;
for (int i = 1; i <= n; ++i) {
int a, x;
scanf("%d %d", &a, &x);
ma[a] += x;
int l = a;
while (ma.find(l) != ma.end() && ma[l] > 2) {
ma[l + 1] += (ma[l] - 1) / 2;
ma[l] = ((ma[l] & 1) ? 1 : 2);
++l;
}
}

vector<int> a, b;
for (auto item : ma) {
a.push_back(item.first);
if (item.second > 1) {
b.push_back(item.first);
}
}

sort(a.begin(), a.end());
sort(b.begin(), b.end());
int l = 0, r = 0, lb = 0;
ll ans = 1;
for (int i = 1; i < a.size() + 1; ++i) {
if (i < a.size() && a[i] == a[r] + 1) {
r = i;
} else {
ll sum = 1;
for (int j = l; j <= r; ++j) {
sum += qpow2(a[j] - a[l]);
sum %= mod;
}
while(lb < b.size() && b[lb] <= a[r]) {
sum += qpow2(b[lb] - a[l]);
sum %= mod;
++lb;
}
ans *= sum; ans %= mod;
l = r = i;
}
}
printf("Case #%d: %lld\n", cas, ans);
}
}